Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255906

RESUMO

Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.


Assuntos
Transtorno Autístico , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Transtorno Autístico/genética , Trânsito Gastrointestinal , Intestino Delgado , Jejuno , Modelos Animais de Doenças , Cafeína , Antagonistas GABAérgicos
2.
Glia ; 72(3): 475-503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909340

RESUMO

Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.


Assuntos
Lesões Encefálicas , Nascimento Prematuro , Lactente , Gravidez , Animais , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Neuroglia , Encéfalo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083162

RESUMO

Pelvic floor disorders, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI), are serious and very common. Surgery is commonly undertaken to restore the strength of the vaginal wall using transvaginal surgical mesh (TVM). However, up to 15% of TVM implants result in long-term complications, including pain, recurrent symptoms, and infection.Clinical Relevance- In this study, a new bioengineered TVM has been developed to address these issues. The TVM is visible using noninvasive imaging techniques such as computed tomography (CT); it has a highly similar structural profile to human tissue and potential to reduce pain and inflammation. These combined technological advances have the potential to revolutionize women's health.


Assuntos
Prolapso de Órgão Pélvico , Incontinência Urinária por Estresse , Feminino , Humanos , Prolapso de Órgão Pélvico/diagnóstico por imagem , Prolapso de Órgão Pélvico/cirurgia , Prolapso de Órgão Pélvico/complicações , Incontinência Urinária por Estresse/diagnóstico por imagem , Incontinência Urinária por Estresse/cirurgia , Incontinência Urinária por Estresse/complicações , Vagina/diagnóstico por imagem , Telas Cirúrgicas/efeitos adversos , Tomografia/efeitos adversos
4.
Front Immunol ; 14: 1269890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868978

RESUMO

Intestinal macrophages are well-studied for their conventional roles in the immune response against pathogens and protecting the gut from chronic inflammation. However, these macrophages may also have additional functional roles in gastrointestinal motility under typical conditions. This is likely to occur via both direct and indirect influences on gastrointestinal motility through interaction with myenteric neurons that contribute to the gut-brain axis, but this mechanism is yet to be properly characterised. The CX3CR1 chemokine receptor is expressed in the majority of intestinal macrophages, so we used a conditional knockout Cx3cr1-Dtr (diphtheria toxin receptor) rat model to transiently ablate these cells. We then utilized ex vivo video imaging to evaluate colonic motility. Our previous studies in brain suggested that Cx3cr1-expressing cells repopulate by 7 days after depletion in this model, so we performed our experiments at both the 48 hr (macrophage depletion) and 7-day (macrophage repopulation) time points. We also investigated whether inhibitory neuronal input driven by nitric oxide from the enteric nervous system is required for the regulation of colonic motility by intestinal macrophages. Our results demonstrated that CD163-positive resident intestinal macrophages are important in regulating colonic motility in the absence of this major inhibitory neuronal input. In addition, we show that intestinal macrophages are indispensable in maintaining a healthy intestinal structure. Our study provides a novel understanding of the interplay between the enteric nervous system and intestinal macrophages in colonic motility. We highlight intestinal macrophages as a potential therapeutic target for gastrointestinal motility disorders when inhibitory neuronal input is suppressed.


Assuntos
Interneurônios , Macrófagos , Animais , Ratos , Encéfalo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina
5.
Bio Protoc ; 13(19): e4831, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37817909

RESUMO

Different regions of the gastrointestinal tract have specific functions and thus distinct motility patterns. Motility is primarily regulated by the enteric nervous system (ENS), an intrinsic network of neurons located within the gut wall. Under physiological conditions, the ENS is influenced by the central nervous system (CNS). However, by using ex vivo organ bath experiments, ENS regulation of gut motility can also be studied in the absence of CNS influences. The current technique enables the characterisation of small intestinal, caecal, and colonic motility patterns using an ex vivo organ bath and video imaging protocol. This approach is combined with the novel edge detection script GutMap, available in MATLAB, that functions across Windows and Mac platforms. Dissected intestinal segments are cannulated in an organ bath containing physiological saline with a camera mounted overhead. Video recordings of gut contractions are then converted to spatiotemporal heatmaps and analysed using the GutMap software interface. Using data analysed from the heatmaps, parameters of contractile patterns (including contraction propagation frequency and velocity as well as gut diameter) at baseline and in the presence of drugs/treatments/genetic mutations can be compared. Here, we studied motility patterns of female mice at baseline and in the presence of a nitric oxide synthase inhibitor (Nω-Nitro-L-arginine; NOLA) (nitric oxide being the main inhibitory neurotransmitter of gut motility) to showcase the application of GutMap. This technique is suitable for application to a broad range of animal models of clinical disorders to understand underlying biological pathways contributing to gastrointestinal dysfunction. Key features • Enhanced video imaging analysis of gut contractility in rodents using a novel software interface. • New edge detection algorithm to accurately contour curvatures of the gastrointestinal tract. • Allows for output of high-resolution spatiotemporal heatmaps across Windows and Mac platforms. • Edge detection and analysis method makes motility measurements accessible in different gut regions including the caecum and stomach.

6.
Infect Immun ; 91(11): e0009723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37830823

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a leading cause of bacterial diarrhea with the potential to cause long-term gastrointestinal (GI) dysfunction. Preventative treatments for ETEC-induced diarrhea exist, yet the effects of these treatments on GI commensals in healthy individuals are unclear. Whether administration of a prophylactic preventative treatment for ETEC-induced diarrhea causes specific shifts in gut microbial populations in controlled environments is also unknown. Here, we studied the effects of a hyperimmune bovine colostrum (IMM-124E) used in the manufacture of Travelan (AUST L 106709) on GI bacteria in healthy C57BL/6 mice. Using next-generation sequencing, we aimed to test the onset and magnitude of potential changes to the mouse gut microbiome in response to the antidiarrheagenic hyperimmune bovine colostrum product, rich in immunoglobulins against select ETEC strains (Travelan, Immuron Ltd). We show that in mice administered colostrum containing lipopolysaccharide (LPS) antibodies, there was an increased abundance of potentially gut-beneficial bacteria, such as Akkermansia and Desulfovibrio, without disrupting the underlying ecology of the GI tract. Compared to controls, there was no difference in overall weight gain, body or cecal weights, or small intestine length following LPS antibody colostrum supplementation. Overall, dietary supplementation with colostrum containing LPS antibodies produced subtle alterations in the gut bacterial composition of mice. Primarily, Travelan LPS antibody treatment decreased the ratio of Firmicutes/Bacteroidetes in gut microbial populations in unchallenged healthy mice. Further studies are required to examine the effect of Travelan LPS antibody treatment to engineer the microbiome in a diseased state and during recovery.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Feminino , Gravidez , Camundongos , Animais , Bovinos , Lipopolissacarídeos , Imunoglobulina G , Colostro , Camundongos Endogâmicos C57BL , Fatores Imunológicos , Diarreia/microbiologia , Infecções por Escherichia coli/prevenção & controle
7.
Dev Neurosci ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717575

RESUMO

Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders; with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.

8.
Sci Rep ; 13(1): 12687, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542090

RESUMO

Individuals with Autism Spectrum Disorder (ASD; autism) commonly present with gastrointestinal (GI) illness in addition to core diagnostic behavioural traits. The appendix, or cecum in mice, is important for GI homeostasis via its function as a key site for fermentation and a microbial reservoir. Even so, the role of the appendix and cecum in autism-associated GI symptoms remains uninvestigated. Here, we studied mice with an autism-associated missense mutation in the post-synaptic protein neuroligin-3 (Nlgn3R451C), which impacts brain and enteric neuronal activity. We assessed for changes in cecal motility using a tri-cannulation video-imaging approach in ex vivo preparations from wild-type and Nlgn3R451C mice. We investigated cecal permeability and neurally-evoked secretion in wild-type and Nlgn3R451C tissues using an Ussing chamber set-up. The number of cecal patches in fresh tissue samples were assessed and key immune populations including gut macrophages and dendritic cells were visualised using immunofluorescence. Nlgn3R451C mice displayed accelerated cecal motor complexes and reduced cecal weight in comparison to wildtype littermates. Nlgn3R451C mice also demonstrated reduced neurally-evoked cecal secretion in response to the nicotinic acetylcholine receptor agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP), but permeability was unchanged. We observed an increase in the number of cecal patches in Nlgn3R451C mice, however the cellular morphologies of key immune populations studied were not significantly altered. We show that the R451C nervous system mutation leads to cecal dysmotility, impaired secretion, and neuro-immune alterations. Together, these results suggest that the R451C mutation disrupts the gut-brain axis with GI dysfunction in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Ceco/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Tecido Linfoide/metabolismo , Neurônios/metabolismo
9.
Biomolecules ; 13(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509099

RESUMO

Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 ß -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.


Assuntos
Transtorno do Espectro Autista , Sistema Nervoso Entérico , Camundongos , Animais , Calbindina 2/genética , Calbindina 2/metabolismo , Transtorno do Espectro Autista/metabolismo , Neurônios/metabolismo , Neuroglia , Sinapses , Colinérgicos/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G230-G238, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431584

RESUMO

Maternal influenza A virus (IAV) infection during pregnancy can affect offspring immune programming and development. Offspring born from influenza-infected mothers are at increased risk of neurodevelopmental disorders and have impaired respiratory mucosal immunity against pathogens. The gut-associated lymphoid tissue (GALT) represents a large proportion of the immune system in the body and plays an important role in gastrointestinal (GI) homeostasis. This includes immune modulation to antigens derived from food or microbes, gut microbiota composition, and gut-brain axis signaling. Therefore, in this study, we investigated the effect of maternal IAV infection on mucosal immunity of the GI tract in the offspring. There were no major anatomical changes to the gastrointestinal tract of offspring born to influenza-infected dams. In contrast, maternal IAV did affect the mucosal immunity of offspring, showing regional differences in immune cell profiles within distinct GALT. Neutrophils, monocytes/macrophages, CD4+ and CD8+ T cells infiltration was increased in the cecal patch offspring from IAV-infected dams. In the Peyer's patches, only activated CD4+ T cells were increased in IAV offspring. IL-6 gene expression was also elevated in the cecal patch but not in the Peyer's patches of IAV offspring. These findings suggest that maternal IAV infection perturbs homeostatic mucosal immunity in the offspring gastrointestinal tract. This could have profound ramifications on the gut-brain axis and mucosal immunity in the lungs leading to increased susceptibility to respiratory infections and neurological disorders in the offspring later in life.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy is associated with changes in gut-associated lymphoid tissue (GALT) in the offspring in a region-dependent manner. Neutrophils and monocytes/macrophages were elevated in the cecal patch of offspring from infected dams. This increase in innate immune cell infiltration was not observed in the Peyer's patches. T cells were also elevated in the cecal patch but not in the Peyer's patches.


Assuntos
Vírus da Influenza A , Influenza Humana , Gravidez , Feminino , Camundongos , Animais , Humanos , Nódulos Linfáticos Agregados , Imunidade nas Mucosas , Linfócitos T CD8-Positivos
13.
Parasitol Res ; 122(3): 789-799, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602586

RESUMO

Cerebral malaria (CM) is the most severe form of malaria with the highest mortality rate and can result in life-long neurological deficits and ongoing comorbidities. Factors contributing to severity of infection and development of CM are not fully elucidated. Recent studies have indicated a key role of the gut microbiome in a range of health conditions that affect the brain, but limited microbiome research has been conducted in the context of malaria. To address this knowledge gap, the impact of CM on the gut microbiome was investigated in mice. C57BL/6J mice were infected with Plasmodium berghei ANKA (PbA) parasites and compared to non-infected controls. Microbial DNA from faecal pellets collected daily for 6-days post-infection were extracted, and microbiome comparisons conducted using 16S rRNA profiling. We identified significant differences in the composition of bacterial communities between the infected and the non-infected groups, including a higher abundance of the genera Akkermansia, Alistipes and Alloprevotella in PbA-infected mice. Furthermore, intestinal samples were collected post-cull for morphological analysis. We determined that the caecal weight was significantly lower, and the small intestine was significantly longer in PbA-infected mice than in the non-infected controls. We concluded that changes in microbial community composition were primarily driven by the infection protocol and, to a lesser extent, by the time of infection. Our findings pave the way for a new area of research and novel intervention strategies to modulate the severity of cerebral malaria disease.


Assuntos
Malária Cerebral , Microbiota , Animais , Camundongos , Malária Cerebral/parasitologia , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Intestinos/microbiologia , Plasmodium berghei/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G477-G487, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126271

RESUMO

Gastrointestinal motility is crucial to gut health and has been associated with different disorders such as inflammatory bowel diseases and postoperative ileus. Despite rat and mouse being the two animal models most widely used in gastrointestinal research, minimal studies in rats have investigated gastrointestinal motility. Therefore, our study provides a comparison of colonic motility in the mouse and rat to clarify species differences and assess the relative effectiveness of each animal model for colonic motility research. We describe the protocol modifications and optimization undertaken to enable video imaging of colonic motility in the rat. Apart from the broad difference in terms of gastrointestinal diameter and length, we identified differences in the fundamental histology of the proximal colon such that the rat had larger villus height-to-width and villus height-to-crypt depth ratios compared with mouse. Since gut motility is tightly regulated by the enteric nervous system (ENS), we investigated how colonic contractile activity within each rodent species responds to modulation of the ENS inhibitory neuronal network. Here we used Nω-nitro-l-arginine (l-NNA), an inhibitor of nitric oxide synthase (NOS) to assess proximal colon responses to the stimulatory effect of blocking the major inhibitory neurotransmitter, nitric oxide (NO). In rats, the frequency of proximal colonic contractions increased in the presence of l-NNA (vs. control levels) to a greater extent than in mice. This is despite a similar number of NOS-expressing neurons in the myenteric plexus across species. Given this increase in colonic contraction frequency, the rat represents another relevant animal model for investigating how gastrointestinal motility is regulated by the inhibitory neuronal network of the ENS.NEW & NOTEWORTHY Mice and rats are widely used in gastrointestinal research but have fundamental differences that make them important as different models for different questions. We found that mice have a higher villi length-to-width and villi length-to-crypt depth ratio than rat in proximal colon. Using the ex vivo video imaging technique, we observed that rat colon has more prominent response to blockade of major inhibitory neurotransmitter (nitric oxide) in myenteric plexus than mouse colon.


Assuntos
Sistema Nervoso Entérico , Óxido Nítrico , Ratos , Camundongos , Animais , Óxido Nítrico/farmacologia , Ratos Sprague-Dawley , Sistema Nervoso Entérico/fisiologia , Plexo Mientérico , Motilidade Gastrointestinal/fisiologia , Colo , Nitroarginina/farmacologia , Óxido Nítrico Sintase , Modelos Animais de Doenças
15.
Front Neurol ; 13: 938163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937061

RESUMO

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.

16.
Front Cell Infect Microbiol ; 12: 905841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846755

RESUMO

Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Modelos Animais de Doenças , Disbiose/microbiologia , Gastroenteropatias/microbiologia , Humanos , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Qualidade de Vida
17.
Front Neurosci ; 15: 647555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658750

RESUMO

Women are more susceptible to functional bowel disorders than men and the severity of their symptoms such as diarrhea, constipation, abdominal pain and bloating changes over the menstrual cycle, suggesting a role for sex hormones in gastrointestinal function. Nitric oxide (NO) is a major inhibitory neurotransmitter in the gut and blockade of nitric oxide synthase (NOS; responsible for NO synthesis) increases colonic motility in male mice ex vivo. We assessed the effects of NOS inhibition on colonic motility in female mice using video imaging analysis of colonic motor complexes (CMCs). To understand interactions between NO and estrogen in the gut, we also quantified neuronal NOS and estrogen receptor alpha (ERα)-expressing myenteric neurons in estrus and proestrus female mice using immunofluorescence. Mice in estrus had fewer CMCs under control conditions (6 ± 1 per 15 min, n = 22) compared to proestrus (8 ± 1 per 15 min, n = 22, One-way ANOVA, p = 0.041). During proestrus, the NOS antagonist N-nitro-L-arginine (NOLA) increased CMC numbers compared to controls (189 ± 46%). In contrast, NOLA had no significant effect on CMC numbers during estrus. During estrus, we observed more NOS-expressing myenteric neurons (48 ± 2%) than during proestrus (39 ± 1%, n = 3, p = 0.035). Increased nuclear expression of ERα was observed in estrus which coincided with an altered motility response to NOLA in contrast with proestrus when ERα was largely cytoplasmic. In conclusion, we confirm a cyclic and sexually dimorphic effect of NOS activity in female mouse colon, which could be due to genomic effects of estrogens via ERα.

18.
Cell Mol Gastroenterol Hepatol ; 12(5): 1701-1718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506953

RESUMO

Intestinal macrophages play a key role in the gut immune system and the regulation of gastrointestinal physiology, including gut motility and secretion. Their ability to keep the gut from chronic inflammation despite constantly facing foreign antigens has been an important focus in gastrointestinal research. However, the heterogeneity of intestinal macrophages has impeded our understanding of their specific roles. It is now becoming clear that subsets of intestinal macrophages play diverse roles in various gastrointestinal diseases. This occurs through a complex interplay between cytokine production and enteric nervous system activation that differs for each pathologic condition. Key diseases and disorders in which intestinal macrophages play a role include postoperative ileus, inflammatory bowel disease, necrotizing enterocolitis, as well as gastrointestinal disorders associated with human immunodeficiency virus and Parkinson's disease. Here, we review the identification of intestinal macrophage subsets based on their origins and functions, how specific subsets regulate gut physiology, and the potential for these heterogeneous subpopulations to contribute to disease states. Furthermore, we outline the potential for these subpopulations to provide unique targets for the development of novel therapies for these disorders.


Assuntos
Trato Gastrointestinal/fisiologia , Homeostase , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Plasticidade Celular , Suscetibilidade a Doenças , Sistema Nervoso Entérico , Motilidade Gastrointestinal , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Transdução de Sinais
19.
Curr Neurol Neurosci Rep ; 21(9): 45, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227043

RESUMO

PURPOSE OF REVIEW: Mild traumatic brain injury (mTBI) is a continuing healthcare concern worldwide contributing to significant cognitive and neurological impairment, consequently affecting activities of daily living. While mTBI recovery is becoming well studied, there are no interventions to reduce the known impairments of mTBI. Omega-3 fatty acids (N-3FA) are safe and beneficial for brain health; however, their potential effects in a pathophysiological environment such as that seen post-mTBI are unknown. RECENT FINDINGS: Preclinical studies using rodent models are key to understanding molecular mechanisms underlying improvements post-injury. Studies to date have shown improved outcomes in rodent models following mTBI protocols, but these data have not been quantified using a systematic review and meta-analysis approach. Our systematic review assessed 291 studies identified from the literature. Of these studies, 18 studies met inclusion criteria. We conducted a meta-analysis examining the effect of high-dose n-3FA vs placebo on neurological, cognitive and molecular changes following mTBI. Quality of studies was rated as moderate to high quality, and while mostly compliant, some areas of risk of bias were identified. Results showed that preclinical doses of 10-370 mg/kg/day of n-3FA per day in rodents (equivalent to high clinical doses) resulted in improvements in neurological and cognitive performance (pooled effect sizes ranging between 1.52 and 3.55). Similarly, improvements in molecular and inflammatory markers were observed in treated rodents vs control (pooled effect sizes: 3.73-6.55). Overall, these findings highlight the potential for high-dose n-3FA for human clinical studies following mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas , Ácidos Graxos Ômega-3 , Atividades Cotidianas , Encéfalo , Ácidos Graxos Ômega-3/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA